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Abstract: This paper investigates a class of estimation problems of the semiparametric model with missing data.
In order to overcome the robust defect of traditional complete data estimation method and regression imputation
estimation technique, we propose a modified imputation estimation approach called Kriging-regression imputation.
Compared with previous method used in the references cited therein , the new proposed method not only makes
more use of the data information, but also has better robustness. Model estimation and asymptotic distribution
of the estimators are also derived theoretically. In order to improve the robustness, LASSO technique is further
introduced into Kriging-regression imputation. Numerical experiment is also provided to show the effectiveness
and superiority of our method.

Key–Words:semiparameter model, data missing, imputation techniques, asymptotic normality, consistency.

1 Introduction

With the rapid development of computing techniques,
statistic inference theories of parametric and nonpara-
metric regression model have gradually become ma-
ture, See the work of Conover [1], Green and Silver-
man [2], Midi and Mohammed [3], Pinto et al. [4],
Adeogun [5], Fan and Gijbels [6] and Mood [7], a-
mong others. In recent three decades, semiparamet-
ric model has attained more and more popularity in
various areas because of parametric model is prone to
subjective error as well as nonparametric method can
not avoid the curse of dimensionality. Similarly, semi-
parametric model has various forms, such as addi-
tive model, partially linear regression model, varying-
coefficient model and so on. For example, Hastie and
Tibshirani [8] have received the corresponding fitting
method of the additive model. As a useful extension of
partially linear model and varying-coefficient model,
semiparametric partially linear vary-coefficient model
has widely application.

Consider the semiparametric partially linear
varying-coefficient model as follows:

Y = ZTβ +XTα(U) + ε, (1)

where Y is response variable, and(XT , ZT , U) is the
associated covariates. For simplicity, we assumeU
is univariate. ε is an independent random error with
E(ε|X,Z,U) = 0 andV ar(ε|X,Z,U) = δ2. β =

(β1, . . . βq)
T is a q-dimensional vector of unknown

parametric component,α(U) = (α1(U), . . . αp(U))T

is a p-dimensional vector of unknown coefficien-
t function.

Obviously, whenZ = 0, model (1) reduces to
varying-coefficient model, which has been widely s-
tudied in the literature, see the work of Cai et al.
[9], Chen and Tsay [10], Hastile and Tibshirani [11],
Huang et al. [12], Fan and Zhang [13], Xia and Li
[14], Hoover et al.[15], Hu and Xia [16] and Huang
et al.[17], among others. Whenp = 1 andZ = 1
model (1) becomes partially linear regression mod-
el, which was proposed by Engle et al. [18] when
they researched the influence of weather on electricity
demand. A series of literature ( Chen [19], Yatchew
[20], Liang [21], Speckman [22], Liang et al. [23])
regarding partially linear regression model have pro-
vided corresponding statistics inference.

Recently, model (1) has been widely studied by
Fan and Huang [24], Zhou and You [25], Wei and
Wu [26], Zhang and Lee [27], You and Chen [28]
and so on. In [28], You and Chen studied the estima-
tion of partially linear varying-coefficient model un-
der the circumstance that some covariates were mea-
sured with additive errors. In [24], Fan and Huang
proposed a profile least squares technique for esti-
mating parametric component and put forth the gen-
eralized likelihood ratio test for the testing problem.
Furthermore, they proved asymptotic normality of
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the profile least squares estimator and demonstrated
the generalized likelihood ratio statistics followed an
asymptotically chi-squared distribution under the null
hypothesis.

It is worth pointing out that, in practice, data may
often not be available completely because of some in-
evitable factors. This means that, in actual statistical
analysis, response variableY may be missing. As is
well known that, data missing can cause certain influ-
ence for the estimation accuracy of parameter compo-
nentβ and functionα(U). In this case, a commonly
used technique is to introduce a new variableδ. If
δ = 0, means that Y is missing, andδ = 1 otherwise.
If Y is missing at random,δ and Y are conditionally
independent, then we have

P (δ = 1|Y,X,Z,U) = P (δ = 1|X,Z,U).

Due to the importance and practicability of the
missing data estimation, semiparametric partially lin-
ear varying-coefficient model with missing response
has attracted many authors’ attention, such as Wei
[29], Little and Rubin [30], Chu and Cheng [31],
Wang el at. [32] and so on. The simplest method
for dealing with the missing data is to delete the miss-
ing data, in other words, we just adopt the data when
δ = 1. This technique is so called the method of
complete-case data. However, deleting the missing
data means the loss of data information. In order to
better utilize the data information, Chu and Cheng
[31] adopted the techniques of regression imputation.
The main idea of regression imputation is to use the
simplest local linear smoother to impute a prediction
value for the missing Y at each X withδ = 0. For the
method of complete-case data, it has the advantage in
statistical computation, but it can not make full use of
data information, so that it can not capture the relation
between the responses and their associated covariates
well. Compared with complete-case data method, re-
gression imputation approach has the better estima-
tion efficiency, thus it has attracted more and more re-
searchers’ attention.

However, the traditional classical regression im-
putation approach dose not consider the factor of re-
sponse variable. Thus it is not an excellent method.
Another point needs to be pointed out that, tradition-
al regression imputation approach utilizes the ordi-
nary least squares estimation to replace the missing
response values. As is well known that, ordinary least
squares estimator has poor robustness. If there exists
abnormal data in independent variables, the imputed
value of response variableY must be far away from
the true value. This naturally leads to that the param-
eter estimator has poor robustness.

To inherit the advantage of regression imputation
approach, and overcome the defects of the two aspects

mentioned in the above discussion, a natural idea is to
introduce Kriging imputation and Lasso approach in-
to traditional regression imputation technique. Since
regression imputation can effectively utilize the infor-
mation of independent variable, and Kriging imputa-
tion method can effectively utilize the information of
response variable, thus, the combination between re-
gression imputation and Kriging imputation can suf-
ficiently make use of data information and improve
the efficiency of estimator. Additionally, noticed the
effect of Lasso method to eliminate the cumulative ef-
fect in model selection and imputation estimator. In
this paper, we further derive some improved results by
using least absolute shrinkage and selection operator
technique. In order to show the effectiveness and su-
periority of our technique proposed in this paper, one
numerical simulation is also provided.

The rest of the paper is arranged as follows. We
will introduce the complete-case data method and
classical regression imputation approach of handling
the semiparametric model with missing responses re-
spectively in section 2 and section 3, respectively. In
section 4, we use the Kriging regression imputation
technique to receive the estimators for the parametric
and nonparametric component. And then we provide
statistics inference of asymptotic normality of profile
least-squares estimator and strong convergence rate of
nonparametric component. Further discussion is pro-
vided in section 5. Some simulation studies are con-
ducted in section 6. The proofs of the main results are
relegated to the Appendix.

2 Complete-case Data Estimation
As for the estimation method of complete-case data,
we focus on the case whereδ = 1. We begin with the
following assumptions:

Assumption 1. The random variableU has a bound-
ed supportΩ. Its density functionf(.) is Lipschitz
continuous and bounded away from 0 on its support.

Assumption 2. For eachE(U ∈ Ω), E(XXT |U)
is non-singular. E(XXT |U), E(XXT |U)−1 and
E(XZT |U) are all Lipschitz continuous.

Assumption 3. There is ans > 2 such that
E||X||2s < ∞ and E||Z||2s < ∞ and for some
ε < 2− s−1 such thatn2ε−1h → ∞.

Assumption 4. {αj(.), j = 1, . . . p} have continuous
second derivatives inU ∈ Ω.

Assumption 5. The functionK(.) is a symmetric
density function with compact support and the band-
width satisfiesnh8 → 0 andnh2/(log n)2 → ∞.

Denotecni = h2i + {log(1/hi)/nhi}1/2, i = 1, 2,
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which will be used in the proof of the lemmas and
theorems.

Let {Xi, Yi, Zi, Ui, δi}ni=1 be a set of random
sample with sizen, from model (1), we have

δiYi = δiZ
T
i β + δiX

T
i α(Ui) + δiεi. (2)

If the parametric componentβ is given, model (2) can
be written as

δi(Yi − ZT
i β) =

p
∑

j=1

δiαj(Ui)Xij + δiεi. (3)

According to Fan and Huang [24], we can apply the
local linear regression technique to estimate the coef-
ficientα(U). Foru in a small neighborhood ofu0, by
Taylor expansion, we have

αj(u) ≈ αj(u0)+α′
j(u0)(u−u0) , aj+bj(u−u0).

This leads to the following weighted least-squares
problem: find{(aj , bj), j = 1, . . . p} to minimize

n∑

i=1

[Y ∗

i −

p∑

j=1

{aj + bj(Ui − u0)}Xij ]
2
Kh1

(Ui − u0)δi, (4)

whereY ∗
i = Yi − ZT

i β,Kh1
(.) = K(./h1)/h1; K(.)

is a kernel function andh1 is a bandwidth. From equa-
tion (4), the weighted least-square estimation ofα̂c(u)
is given by

α̂c(u) = (Ip, 0p){DT
u0
W δ

u0
Du0

}−1DT
u0
W δ

u0
(Y −Zβ),

where

Y =











Y1

Y2
...
Yn











, Du0
=











XT
1

U1−u0

h1
XT

1

XT
2

U2−u0

h1
XT

2
...

...
XT

n
Un−u0

h1
XT

n











,

Z =











ZT
1

ZT
2
...

ZT
n











=











Z11 Z12 . . . Z1q

Z21 Z22 . . . Z2q
...

...
...

...
Zn1 Zn2 . . . Znq











,

W δ
u0

= diag(Kh1(U1 − u0)δ1, . . . Kh1(Un − u0)δn).
Replaceα(Ui) by α̂c(Ui), model (3) can be simplified
as

δi(Yi − Ŷi) = δi(Zi − Ẑi)
Tβ + δiεi, (5)

whereŶ , (Ŷ1, . . . Ŷn) = ScY , Ẑ , (Ẑ1, . . . Ẑn) =
ScZ with

Sc =











(XT
1 , 0){DT

u1
W δ

u1
Du1

}−1DT
u1
W δ

u1

(XT
2 , 0){DT

u2
W δ

u2
Du2

}−1DT
u2
W δ

u2

...
(XT

n , 0){DT
un
W δ

un
Dun}−1DT

un
W δ

un











.

Applying the least squares to model (5), we obtain the
profile least squares estimator ofβ as follows

β̂c = {
n
∑

i=1

δi(Zi − Ẑi)(Zi − Ẑi)
T }−1

n
∑

i=1

δi(Zi

− Ẑi)(Yi − Ŷi).

(6)

Substitutingβ̂c into the expression of̂αc(u), we
can further get the final estimator ofα̂c(u) as follows

α̂c(u) = (Ip , 0p){DT
u0
W δ

u0
Du0

}−1DT
u0
W δ

u0
(Y − Zβ̂c).

Similar to Wei [29], the properties of̂βc, α̂c(u)
can be shown as follows.

Theorem 1 Suppose that the assumptions 1-5 hold,
the estimator of parametric componentβ is asymptot-
ically normal, that is

√
n(β̂c − β) −→ N(0,Σ−1

1 Ω1Σ
−1
1 ),

where

Σ1 = E{δ[Z −Φc(U)Γ−1
c X]⊗2},Ω1 = {E(ZZT )−

E[E(δ(ZXT |U))E(δ(XXT |U)−1)E(δ(ZXT |U))]},
A⊗2 meansAAT .

Theorem 2 Suppose that the assumptions 1-5 hold, if
h1 = cn−1/5, wherec is constant, then

max
1≤j≤p

sup
u∈Ω

|α̂cj(u)− αj(u)| = O{n−2/5(log n)1/2},

a.s.

Remark 1 Obviously, complete-case data estimation
technique is easy to see, and the estimators are easy to
be obtained. It has the advantage in statistical com-
putation. However, deleting the missing data direct-
ly means the loss of data information, this makes the
method of complete-case data can not make full use of
data information, so it can not capture the real rela-
tions between the responses and their associated co-
variates well.

3 Regression Imputation Approach

In order to overcome the flaws of complete-case tech-
nique, a commonly used method for handing missing
data is regression imputation. Since regression im-
putation can utilize more data information, it has re-
ceived a lot of researchers’ interest. The main idea of
regression imputation technique is to impute a plausi-
ble value for each missing response. Chu and Cheng
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[31] used the simplest local linear smoother to im-
pute a prediction value for each missingY on the ba-
sis of complete-case data estimation approach. For
a random sample{Yi,Xi, Zi, Ui}ni=1 and the imputa-
tion values, the new observed values can be denoted
as{Ỹi,Xi, Zi, Ui}ni=1, where

Ỹi = δiYi + (1− δi)(X
T
i α̂c(Ui) + ZT

i β̂c). (7)

Substituting the expression ofỸi for Y in (1), we have

Ỹi = XT
i α(Ui) + ZT

i β + ei, (8)

whereei = Ỹi − Yi + εi. Similar to the derivation
method used in section 2, the profile least squares esti-
mator ofβ by the classical regression imputation tech-
nique can be given as follows

β̂I = {
n
∑

i=1

(Zi − Z̃i)(Zi − Z̃i)
T }−1

n
∑

i=1

(Zi

− Z̃i)(Ỹi − Ỹ ∗
i ),

(9)

whereỸ ∗ = (Ỹ ∗
1 , . . . Ỹ

∗
n ) , SI Ỹ , Z̃ , (Z̃1, . . . Z̃n)

= SIZ,

SI =











(XT
1 , 0){DT

u1
Wu1

Du1
}−1DT

u1
Wu1

(XT
2 , 0){DT

u2
Wu2

Du2
}−1DT

u2
Wu2

...
(XT

n , 0){DT
un
WunDun}−1DT

un
Wun











,

Wu0
= diag(Kh2

(U1 − u0), . . . Kh2
(Un − u0)), and

h2 is different fromh1.
Furthermore, the estimator ofαI(u) can be ex-

pressed by

α̂I(u) = (Ip, 0p){DT
u0
Wu0

Du0
}−1 ×

DT
u0
Wu0

(Ỹ − Zβ̂I).

The following theorems illustrate the asymptotic
normality and consistency of corresponding estima-
tors as follows.

Theorem 3 Suppose that the assumptions 1-5 hold.
The estimator of parametric componentβ is asymp-
totically normal, that is

√
n(β̂I − β) −→ N(0,Σ−1Ω2Σ

−1),

where

Σ = E{[Z−Φ(U)Γ−1(U)X][Z−Φ(U)Γ−1(U)X]T },

Ω2 = (Σ2 +Σ1)Σ
−1
1 Ω1Σ

−1
1 (Σ2 +Σ1),

Σ2 = E{(1 − δ)[Z − Φ(U)Γ−1(U)X]×
[Z − Φ(U)Γ−1(U)X]T }.

Theorem 4 Suppose that the assumptions 1-5 hold.If
h1 = b1n

−1/5, h2 = b2n
−1/5, whereb1 and b2 are

constants, then

max
1≤j≤p

sup
u∈Ω

|α̂Ij(u)− αj(u)| = O{n−2/5(logn)1/2},

a.s.

Remark 2 From the analysis of classical regression
imputation approach, one can see that the estima-
tion efficient is improved comparing with the method
of complete-case data. It can make more use of
the data information if we substitute missingYi with
XT

i α̂c(Ui) +ZT
i β̂c. However, it is worth pointing out

that, the imputation process of imputation approach
mainly considers the information of independent vari-
able. If the information of response variable can be
sufficiently utilized, the accuracy of estimator may be
further improved.

Remark 3 As is well known that, least squares esti-
mator has poor robustness. If there exists abnormal
data in independent variables, the imputed value of
response variableY must be far away from the true
value. In this case, the imputed value may destroy
the estimation efficiency of regression imputation ap-
proach. One solution to overcome this defect is to
further introduce Kriging technique into imputation
process. Kriging technique can sufficiently utilize the
response variable information, thus may be useful to
improve the estimation efficiency and robustness. The
related discussion can be seen in section 4.

Remark 4 Considering the function of Lasso tech-
nique in eliminating cumulative effect for model se-
lection and imputation estimator, another method to
improve the estimation robustness is to introduce Las-
so technique into regression imputation approach, and
the related further discussion can be seen in section 5.

4 Kriging Regression Imputation
Technique

Combined Kriging imputation idea with the approach
of classical regression imputation, in this section, we
propose a modified imputation technique called Krig-
ing regression imputation. Kriging imputation aims at
assigning a weight to each non-lost response and im-
putes responsêYi = (XT

i α̂c(Ui) + ZT
i β̂c). Based on

the theory of Kriging imputation, the result is more
precise and has less error due to the non-bias condi-
tion together with minimum estimation variance are
required.

For the convenience of discussion, we first dis-
cuss the case where the weight function is previous
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given. This is a special Kriging imputation tech-
nique. Suppose that{Yi,Xi, Zi, Ui}ni=1 is a random
sample, and the imputation value is(XT

i α̂c(Ui) +

ZT
i β̂c), then the new observed values can be noted as

{Y 0
i ,Xi, Zi, Ui}ni=1, where

Y 0
i = δ̄iYi + (1− δ̄i)

n
∑

j=1

Kij
h (Uj − ui)Ỹj , (10)

Ỹj is defined in (7). If̄δ = 0, means that Y is missing,
andδ̄ = 1 otherwise. Herēδ can be independent with
δ, and we always assume that

n
∑

j=1

Kij
h (Uj − ui) = 1

Similar to the discussions in section 3, we can obtain

Y 0
i = XT

i α(Ui) + ZT
i β + eri, (11)

whereeri = Y 0
i −Yi+εi. For model (11), the estima-

tor of nonparametric componentα(u), we follows the
idea of locally linear smoothing by the Taylor expan-
sion, and find the optimal estimator similar to section
2. The profile least squares estimator ofβ by the K-
riging regression imputation technique is

β̂KI = {
n
∑

i=1

(Zi − Ži)(Zi − Ži)
T }−1

n
∑

i=1

(Zi

− Ži)(Y
0
i − Y̌ 0

i ),

(12)

whereY̌ 0 , (Y̌ 0
1 , . . . Y̌

0
n ) = SKIY

0, Ž , (Ž1 . . .,
Žn) = SKIZ,

SKI =











(XT
1 , 0){DT

u1
W 0

u1
Du1

}−1DT
u1
W 0

u1

(XT
2 , 0){DT

u2
W 0

u2
Du2

}−1DT
u2
W 0

u2

...
(XT

n , 0){DT
un
W 0

un
Dun}−1DT

un
W 0

un











,

W 0
u0

= diag(Kh3(U1 − u0), . . . Kh3(Un − u0)), and
h3 can be different fromh1 andh2.

Furthermore, the estimator ofαKI(U) can be ex-
pressed by

α̂KI(u) = (Ip , 0p){DT
u0
W 0

u0
Du0

}−1×

DT
u0
Wu0

(Y 0 − Zβ̂KI).

The theorems illustrate the asymptotic normality and
consistency of corresponding estimators are as fol-
lows.

Theorem 5 Under the assumptions 1-5, the profile
least square estimator ofβ is asymptotically normal,
that is

√
n(β̂KI − β) −→ N(0,Ξ−1Ω3Ξ

−1),

where

Ξ = E{[Z − ΦKI(U)Γ−1
KI(U)X] ×

[Z − ΦKI(U)Γ−1
KI(U)X]T },

Ω3 = (Σ3 + Σ̌1)Σ
−1
1 Ω1Σ

−1
1 (Σ3 + Σ̌1),

Σ3 =

n
∑

j=1

Kij
h (Uj − u0)(1− δj)E{(1 − δ̄)

[Z−ΦKI(U)Γ−1
KI(U)X][Z−ΦKI(U)Γ−1KI(U)X]T },

Σ̌1 =

n
∑

j=1

Kij
h (Uj − u0)(1− δj)Σ1.

Theorem 6 Suppose that the assumptions 1-5 hold.
If h1 = c1n

−1/5, h3 = c2n
−1/5, wherec1 andc2 are

constants, then we have

max
1≤j≤p

sup
u∈Ω

|α̂KIj(u)−αj(u)| = O{n−2/5(logn)1/2},

a.s.

Theorem 7 It is easy to see that the Kriging regres-
sion imputation technique is more efficient than the
the traditional solution of handling missing response.
Based on theorem 3 and theorem 5 we have

V arβ̂KI ≤ V arβ̂I .

When the kernel functionKij
h (Uj−ui) is not pre-

vious given, we can obtain the weights by establish-
ing Kriging equations. Note that variablevi is the ob-
servations of(Yi, Ui) geographic coordinates of point
locations. If we denoteλ as weight coefficient ma-
trix and then we can deduce Kriging equation set by
decomposing variation function which aims at mini-
mizing variance of estimation errors. Further, we can
obtain the weight coefficient matrixλ and conduct s-
tatistics inference further. If the Kriging equations are
expressed in matrix form, then

Kλ = M, (13)

whereK =














γ(U1, U1) γ(U1, U2) . . . γ(U1, Un) 1
γ(U2, U1) γ(U2, U2) . . . γ(U2, Un) 1

...
...

...
...

...
γ(Un, U1) γ(Un, U2) . . . γ(Un, Un) 1

1 1 . . . 1 0















,
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M =















γ(U1, U)
γ(U2, U)

...
γ(Un, U)

1















, λ =















λ1

λ2
...
λn

µ















.

Here, γ(.) means the variance function,γ(U1, U)
means the variance function value between the first
point and the unknown point. In that case, from e-
quation (13), the weight coefficient matrix can be ex-
pressed by

λ = K−1M.

5 Kriging Regression Imputation
with LASSO Technique

In order to improve the robustness of estimator, in this
section, we will further introduce lasso technique into
the semiparametric model. Since LASSO technique
can complete the parameter estimation and model se-
lection simultaneously, thus, it attracts more and more
researchers’ attention. Here, our purpose is to utilize
LASSO technique to identify unimportant regression
independent variables, and remove them. In this way,
the estimation error may become smaller, thus can im-
prove the robustness of estimator.

Firstly, in the case of complete-case data, we
adopt the responses whereδi = 1, i = 1, . . . , n. For
α(u), by Taylor expansion, we have

αj(u) ≈ αj(u0) + α′
j(u0)(u− u0)

Thus, model (2) can be rewritten as

Y δi = Xδ
i

T
α(u0) + (Ui − u0)X

δ
i

T
α′(u0) + Zδ

i

T
β + εδi , (14)

whereY δi = δiYi, X
δ
i = δiXi, Z

δ
i = δiZi, ε

δ
i = δiεi.

Let us consider the following lasso model,

Qλ(β) =
n
∑

i=1

δi{Yi − Ŷi − (Zi − Ẑi)
Tβ)}2

+ λ

q
∑

j=1

|βj |,
(15)

whereλ > 0 is an arbitrary constant.
The lasso estimator can be given by

β̂lasso = arg min Qλ(β).

Notice that, ifβ̂c ≥ λ̃, whereλ̃ = 1
2λ, β̂lasso =

β̂c − λ̃. If β̂c ≤ −λ̃, β̂lasso = β̂c + λ̃. If −λ̃ ≤ β̂c ≤
λ̃, β̂lasso = 0, thus the relationship between̂βc with
β̂lasso is

β̂lasso = β̂c − sign(β̂c)λ̃.

Then equation (7) can be rewritten as

Ỹ lasso

i = δiYi + (1 − δi)(X
T

i α̂
lasso

c (Ui) + ZT

i β̂
lasso

c ),
(16)

where α̂lasso
c (ui) = (Ip , 0p){DT

u0
W δ

u0
Du0

}−1

DT
u0
W δ

u0
(Y − Zβ̂lasso

c ).

SubstitutingỸi with Ỹ lasso
i in model (7), we can

obtain the new form ofY 0
i as follows

Y 0lasso
i = δ̄iYi + (1− δ̄i)

n
∑

j=1

Kij
h (Uj − ui)Ỹ

lasso
j .

(17)
Similar to the analysis process in section 4, we

can get the following statistical inference results.

Theorem 8 Suppose that the assumptions 1-5 hold.
The profile least square estimator ofβ satisfies

√
n(β̂KIL − β) −→ N(sign(β̂c)λ̃Ξ

−1,

Ξ−1(Ω3 + λ̃2)Ξ−1),

where

Ξ = E{[Z − ΦKI(U)Γ−1
KI(U)X] ×

[Z − ΦKI(U)Γ−1
KI(U)X]T },

Ω3 = (Σ3 + Σ̌1)Σ
−1
1 Ω1Σ

−1
1 (Σ3 + Σ̌1),

Σ3 =
n
∑

j=1

Kij
h (Uj − ui)(1 − δj)E{(1 − δ̄)

[Z−ΦKI(U)Γ−1
KI(U)X][Z−ΦKI(U)Γ−1KI(U)X]T },

Σ̌1 =

n
∑

j=1

Kij
h (Uj − ui)(1 − δj)Σ1.

Theorem 9 Suppose that the assumptions 1-5 hold. If
h1 = d1n

−1/5, h4 = d2n
−1/5, whered1 and d2 are

constants, then we have

max
1≤j≤p

sup
u∈Ω

|α̂KILj
(u)−αj(u)| = O{n−2/5(logn)1/2},

a.s.

In order to further improve the robustness of the
estimators, according to Zou [33], we can also consid-
er the following adaptive lasso model

Qλ(θ) =

n
∑

i=1

{Y δ
i − Zδ

i
T
β −Xδ

i
T
α(u0)

−(Ui − u0)X
δ
i
T
α′(u0))}2 + λ

2p+q
∑

j=1

wj |θj|,

(18)
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whereθ = (α1(u0), . . . αp(u0), α
′
p+1(u0) . . . α

′
2p(u0),

β1, . . . βq), wj = 1/|θ̂|τ , τ > 0.
The adaptive lasso estimator can be given by

θ̂alasso = arg min Qλ(θ).

Then model (7) can be rewritten as

Ỹ alasso
i = δiYi + (1− δi)(X

T
i α̂alasso

c (Ui) + ZT
i β̂alasso

c ). (19)

Similar to the proof of theorem8 and theorem 9,
we can further derive the asymptotically properties.
Since the expressions are the same as to theorem 8
and theorem 9, thus they are omitted here.

6 Numerical experiments

6.1 Simulation Studies

In this section, we carried a numerical simulation ex-
ample to show the effectiveness and superiority of our
method.

Considering the semiparameter model as follows:

Y = β1Z1 + β2Z2 + α1(u)X1 + α2(u)X2 + ε,

whereβ1 = 3, β2 = 2, α1(u) = sin(2πu), α2(u) =
cos(2πu). Let Z1 ∼ N(0, 1), Z2 ∼ N(0, 1.5),
X1 ∼ N(0, 1.5), X2 ∼ N(0, 1), u ∼ U(0, 1),
ε ∼ N(0, σ). By using the techniques described in
previous sections, our aim is to estimateβ1, β2 and
compare the estimation efficiency.

In all simulations, we consider a random sample
with 30 percent for missing. Let the kernel function is
standard Gauss kernel, and the bandwidthh = 0.1.
Table 1 shows the compared results with different
methods. From Table 1, one can see that, for different
σ, the methods established in this paper have small-
er variance, which means our method is more superi-
or than traditional complete-case method and classical
regression imputation approach.

6.2 Application to Boston housing data

To further illustrate the efficiency of the proposed
methods, we take the application of Boston housing
data for example. Following Fan and Huang[24],
we take MEDV (median value of owner-occupied
homes in 1,000 United States dollar) as the respons-
es,

√
LSTAT (the percentage of lower status of the

population) as the index variable, and the follow-
ing predictors as the covariates: CRIM(per-captia
crime rata by town), RM(average number of room-
s per dweling), TAX(full-value property-tax rate per
$10000), NOX (nitric oxide concentration in parts per

Table 1: Estimators ofβ1 andβ2 for differentσ

σ 1 1.5 2.0 2.5
mean(βC1) 3.0197 3.0335 3.0723 3.0429
std(βC1) 0.6704 0.8481 0.7375 0.7729

mean(βC2) 2.0144 1.9809 1.9342 2.0557
std(βC2) 0.4299 0.5376 0.8101 0.5813

mean(βI1) 3.0695 3.0956 3.1363 3.0392
std(βI1) 0.6358 0.8127 0.6412 0.7396

mean(βI2) 1.9727 1.9345 2.0352 2.0455
std(βI2) 0.3605 0.4491 0.5972 0.5547

mean(βKI1) 3.0690 3.0952 3.1366 3.0397
std(βKI1) 0.6349 0.8109 0.6411 0.7387

mean(βKI2) 1.9728 1.9348 2.0351 2.0456
std(βKI2) 0.3598 0.4487 0.5968 0.5546

mean(βKIL1) 3.0690 3.0952 3.1366 3.0397
std(βKIL1) 0.6349 0.8109 0.6411 0.7387

mean(βKIL2) 1.9727 1.9348 2.0351 2.0456
std(βKIL2) 0.3598 0.4487 0.5968 0.5546

Table 2: Estimators ofβ1 andβ2 in the application of
Boston housing data

σ 2 coefficient
mean(βC1) 0.8858 αc1(u0) -1.5189
std(βC1) 1.4084 αc2(u0) 0.32815

mean(βC2) 0.4108 αc3(u0) -0.0503
std(βC2) 0.2164 αc4(u0) 30.9534

mean(βI1) 0.9595 αI1(u0) -1.14285
std(βI1) 1.3111 αI2(u0) 1.2548

mean(βI2) 0.4039 αI3(u0) -0.09895
std(βI2) 0.2114 αI4(u0) 54.52215

mean(βKI1) 0.9609 αKI1(u0) -1.1427
std(βKI1) 1.3090 αKI2(u0) 1.2549

mean(βKI2) 0.4036 αKI3(u0) -0.09895
std(βKI2) 0.2111 αKI4(u0) 54.53585

mean(βKIL1) 0.9609 αKIL1(u0) -1.14285
std(βKIL1) 1.3090 αKIL2(u0) 1.2548

mean(βKIL2) 0.4036 αKIL3(u0) -0.09895
std(βKIL2) 0.2111 αKIL4(u0) 54.5221

10 million), PTRATIO(pupil-teacher ratio by town),
AGE(proportion of owner-occupied units built prior
to 1940 ). Consider the semiparametric model as fol-
lows:

Y = β1Z1 + β2Z2 +

4
∑

k=1

αk(U)Xk + ε.

Let PTRATIO, AGE be the variables ofZ1,Z2 re-
spectively, and CRIM, RM, TAX, NOX are denoted
respectively byX1,. . .X4. The main results are pro-
vided in the form of Table 2. From Table 2, one can
see that, for differentσ, the methods established in
this paper have smaller variance, which means our
method is more superior than traditional complete-
case method and classical regression imputation ap-
proach.
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7 Conclusion

In this paper, we propose a modified regression impu-
tation approach called Kriging regression imputation
on the basis of the estimation method of complete-
case data and classical regression imputation. Com-
pared with the method of complete-case data, Kriging
regression imputation technique not only makes more
use of the data information, but also improves the esti-
mation efficiency. Compared with the classical regres-
sion imputation approach, the estimation efficiency of
Kriging regression imputation technique with LASSO
is better as the imputed values not only consider the
effect of covariates but also takes the influence of re-
sponses into account. Numerical experiment shows
that the technique established in this paper is more ef-
fective than the results obtained in the references cited
there in, and have better robustness.
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Appendix
Lemma 7.1 Let (X1, Y1) . . . (Xn,Xn), be indepen-
dent and identically distributed random vectors,
where theYi, i = 1, 2, . . . n. are scalar random
variables. Further assume thatE|y|s < ∞ and
supx

∫

|y|sf(x, y)dy < ∞, wheref means the joint
density of (X,Y). Let K be a bounded positive function
with a bounded support, satisfying a Lipschitz condi-
tion. Given thatn2ε−1h → ∞ for someε < 1− s−1,
then
supx | 1n

∑n
i=1[Kh(Xi − x)Yi − E{Kh(Xi − x)Yi}]|

= Op({
log(1/h)

nh
}1/2).

The proof of Lemma 7.1 can be found in Mack
and Silverman [34].

Lemma 7.2 Suppose that the Assumptions 1-5 hold.
Then it shows that

n−1
n
∑

i=1

δi(Zi − Ẑi)(Zi − Ẑi)
T → Σ1,

n−1
n
∑

i=1

(Zi − Z̃i)(Zi − Z̃i)
T → Σ.

n−1
n
∑

i=1

(Zi − Ži)(Zi − Ži)
T → Ξ.

The proof of Lemma 7.2 is similar to Lemma A.2
in Fan and Huang [24], which is omitted here.

Proof of Theorem 1. By the definition ofβ̂c and let
Λn = n−1

∑n
i=1 δi(Zi− Ẑi)(Zi− Ẑi)

T , then we have
√
n(β̂c − β)

=
1√
n
Λ−1
n

n
∑

i=1

δi(Zi − Ẑi)(X
T
i α(Ui)− ST

ciM)

+
1√
n
Λ−1
n

n
∑

i=1

δi(Zi − Ẑi)(εi − ε̂i)

= I1 + I2. (20)

By lemma 7.1 and similar to the proof of Theorem
4.1 in Fan and Huang [24], it is easy to showI1 =
Op(

√
nc2n).

Denote

DT
u0
W δ

u0
Du0

=

(

D11 D12

D21 D22

)

,

where

D11 =

n
∑

i=1

XiX
T
i Kh1

(Uiu)δi, Uiu = Ui − u0,

D12 =
n
∑

i=1

XiX
T
i

Uiu

h1
Kh1

(Uiu)δi,

D21 =

n
∑

i=1

XiX
T
i

Uiu

h1
Kh1

(Uiu)δi,

D22 =

n
∑

i=1

XiX
T
i (

Uiu

h1
)2Kh1(Uiu)δi.

Notice that

DT
u0
W δ

u0
Z =





∑n
i=1 XiZ

T
i Kh1

(Ui − u0)δi

∑n
i=1 XiZ

T
i

Ui−u0

h1
Kh1

(Ui − u0)δi



 ,

by lemma 7.1, it is easy to see that

DT
u0
W δ

u0
Du0

= nf(U)Γc(U)⊗
(

1 0
0 u2

)

× {1 +Op(cn)},
DT

u0
W δ

u0
Z = nf(U)Φc(U)⊗ (1, 0)T {1 +Op(cn)},

where

Γc(U) = E(δXXT | U),Φc(U) = E(δXZT | U).

By simple calculation, we have

[XT , 0]{DT
u0
W δ

u0
Du0

}−1DT
u0
W δ

u0
Z

= XTΓc(U)−1Φc(U){1 +Op(cn)},
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[XT , 0]{DT
u0
W δ

u0
Du0

}−1DT
u0
W δ

u0
M

= XTα(U){1 +Op(cn)}.
Thus, we have

I1 =
1√
n
Λ−1
n

n
∑

i=1

δi(Zi − Ẑi)(X
T
i α(Ui)− ST

ciM)

=
1√
n
Λ−1
n

n
∑

i=1

δi(Zi − Ẑi)(X
T
i α(Ui)− [XT

i , 0]

× {DT
ui
W δ

ui
Dui

}−1DT
ui
W δ

ui
M}

=
1√
n
Λ−1
n

n
∑

i=1

δi(Zi −XT
i Γ

−1
c (Ui)Φc(Ui))

×XT
i α(Ui){1 +Op(cn)}Op(cn)

= Op(
√
nc2n).

(21)

Similarly,

I2 = Λ−1
n

1√
n

n
∑

i=1

δi(Zi−XT
i Γ

−1
c (Ui)Φc(Ui))(εi−ε̂i),

where

ε̂ = [XT , 0]{DT
u0
W δ

u0
Du0

}−1DT
u0
W δ

u0
ε

= XTΓ−1
c (U)E(δXεT |U)Op(cn).

By lemma 7.2, we obtain

I2 = Σ−1
1

1√
n

n
∑

i=1

δi(Zi−XT
i Γ

−1
c (Ui)Φc(Ui))εi+Op(1).

From Slutsky theorem, and center limit theorem,
one can obtain the results described in theorem 1.

Proof of Theorem 2. By the definition ofα̂c(u), we
have

α̂c(u)

= (Ip, 0p){DT
u0
W δ

u0
Du0

}−1DT
u0
W δ

u0
(Y − Zβ̂c)

= (Ip, 0p){DT
u0
W δ

u0
Du0

}−1DT
u0
W δ

u0
M

+ (Ip, 0p){DT
u0
W δ

u0
Du0

}−1DT
u0
W δ

u0
(ε− Zβ)

+ (Ip, 0p){DT
u0
W δ

u0
Du0

}−1DT
u0
W δ

u0
Z(β − β̂c}.

(22)

Similar to the proof of Theorem 3.1 in Xia and Li
[14], we show that

max
1≤j≤p

sup
U∈Ω

|α̂cj(u)−αj(u)| = O{h21+(logn/nh1)
1/2},

a.s.

If we let h1 = cn−1/5, wherec is constant, then
it satisfies,

max
1≤j≤p

sup
U∈Ω

|α̂cj(u)− αj(u)| = O{n−2/5(logn)1/2}

a.s., which completes the proof.

Proof of Theorem 3. Denote

Πn =
1

n

n
∑

i=1

(Zi − Z̃i)(Zi − Z̃i)
T .

From equation (9), we have

√
n(β̂I − β)

=
1√
n
Π−1

n

n
∑

i=1

(Zi − Z̃i)(Ỹi − Ỹ ∗
i

− (Zi − Z̃i)
Tβ)

=
1√
n
Π−1

n (1− δi)
n
∑

i=1

(Zi − Z̃i)(Zi−

Ẑi)
T (β̂c − β) +

1√
n
Π−1

n

n
∑

i=1

(Zi − Z̃i)

× (XT
i α(Ui) + Z̃T

i β − ST
IiỸi) +

1√
n
Π−1

n

×
n
∑

i=1

(Zi − Z̃i)δiεi +
1√
n
Π−1

n

n
∑

i=1

(1− δi)

× (Zi − Z̃i)(S
T
ciM −XT

i α(Ui)) +
1√
n
Π−1

n

× (1− δi)
n
∑

i=1

(Zi − Z̃i)S
T
ciεi

= Π−1
n (I1 + I2 + I3 + I4 + I5). (23)

Let E(XZT |U) = Φ(U), E(XXT |U) = Γ(U),
thenZ̃i = Φ(Ui)Γ

−1(Ui)Xi. By Lemma 7.1 and the
law of large numbers, we have

I1 =
1√
n

n
∑

i=1

(1− δi)(Zi − Φ(Ui)Γ
−1(Ui)Xi)(Zi

−Φc(Ui)Γ
−1
c (Ui)Xi)

T√n(β̂c − β) +Op(1)

= Σ2Σ
−1
1

1√
n

n
∑

i=1

δi(Zi

−XT
i Γ

−1
c (Ui)Φc(Ui))εi +Op(1). (24)

Consequently,

I2 =
1√
n

n
∑

i=1

(Zi − Z̃i)(X
T
i α(Ui)− SIiM)

− 1√
n

n
∑

i=1

(Zi − Z̃i)δSIiε
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− 1√
n

n
∑

i=1

(Zi − Z̃i)(I − δ)SIi(M̂c −M)

− 1√
n

n
∑

i=1

(Zi − Z̃i)Z̃
T
i (I − δ)(β̂c − β)

= I21 + I22 + I23 + I24, (25)

whereM̂c = [XT
1 α̂c(U1), . . . ,X

T
n α̂c(Un)]

T .
By lemma 7.1, one can obtainI21 = Op(1), I22 =

Op(1). Notice that

1

n

n
∑

i=1

(Zi − Z̃i)Z̃
T
i = Op(1),

β − β̂c = Op(n
−1/2),

1

n

n
∑

i=1

(Zi − Z̃i)S
T
IiX = Op(1).

As a result it has thatI23 = Op(1), I24 = Op(1).
Thus, we haveI2 = Op(1). By Lemma 7.1, we have
I3 = Op(

√
nc2n).

As for I5, one can see that

I5 =
1√
n

n
∑

i=1

(1− δi)Zi(X
T
i , 0){DT

ui
W δ

ui
Dui

}−1

×DT
ui
W δ

ui
εi −

1√
n

n
∑

i=1

(1− δi)Z̃i(X
T
i , 0)

× {DT
ui
W δ

ui
Dui

}−1DT
ui
W δ

ui
εi,

= I51 − I52. (26)

Furthermore, it follows that

I51 =
1√
n

n
∑

i=1

(1− δi)ZiX
T
i (nf(ui)Γ

−1
c (Ui))

−1

×
n
∑

j=1

Kh1(Uj − ui)Xjδjεj +Op(1)

=
1√
n

n
∑

j=1

{
n
∑

i=1

(1− δi)ZiX
T
i (nf(ui)

×Γ−1
c (Ui))

−1Kh1(Uj − ui)}Xjδjεj +Op(1)

=
1√
n

n
∑

i=1

Φ(Ui)Γ
−1
c (Ui)Xiδiεi

− 1√
n

n
∑

i=1

Φc(Ui)Γ
−1
c (Ui)Xiδiεi +Op(1),

(27)

I52 =
1√
n

n
∑

j=1

{
n
∑

i=1

(1− δi)Φ(Ui)Γ
−1(Ui)XiX

T
i

×(nf(ui)Γ
−1
c (Ui))

−1Kh1(Uj − ui)}

×Xjδjεj +OP (1)

=
1√
n

n
∑

i=1

Φ(Ui)Γ
−1
c (Ui)Xiδiεi−

1√
n

n
∑

i=1

Φ(Ui)Γ
−1(Ui)Xiδiεi+Op(1).(28)

From equation (27) and (28), we obtain

I5 =
1√
n

n
∑

i=1

(Φ(Ui)Γ
−1(Ui)Xiδiεi

− Φc(Ui)Γ
−1
c (Ui)Xiδiεi) +Op(1).

Combined with the given results, we further con-
clude that

√
n(β̂I − β) = Σ−1(Σ1 +Σ2)Σ

−1 1√
n

n
∑

i=1

δi(Zi

−XT
i Γ

−1
c (Ui)Φc(Ui))εi +Op(1).

Proof of Theorem 5. Let ∇n = n−1
∑n

i=1 δi(Zi −
Ži)(Zi − Ži)

T , from the definition ofβ̂KI , we obtain

√
n(β̂KI − β)

=
1√
n
∇−1

n

n
∑

i=1

(Zi − Ži)

× (Y 0
i − Y̌ 0

i − (Zi − Ži)
Tβ)

=
1√
n
∇−1

n

n
∑

i=1

(Zi − Ži)(1− δ̄i)
n
∑

j=1

Kij
h (Uj − ui)(1− δj)(Zi − Ẑi)

T (β̂c

− β) +
1√
n
∇−1

n

n
∑

i=1

(Zi − Ži)(1− δ̄i)

Kij
h

n
∑

j=1

(Uj − ui)(1− δj)(SciM−

XT
i α(Ui)) +

1√
n
∇−1

n

n
∑

i=1

(Zi − Ži)

(XT
i α(Ui) + ŽT

i β − SKIY
0
i ) +

1√
n

∇−1
n

n
∑

i=1

(Zi − Ži)(1− δ̄i)

n
∑

j=1

Kij
h

(Uj − ui)(1 − δj)ε̂j +
1√
n
∇−1

n

n
∑

i=1

(Zi − Ži)(δ̄iεi + (1− δ̄)
n
∑

j=1

Kij
h (Uj

− ui)δjεj)

= ∇−1
n (I1 + I2 + I3 + I4 + I5). (29)
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Notice that
∑n

j=1K
ij
h (Uj − ui) = 1, one can ob-

tain

(Zi − Ẑi)
Tβ

= (1− δ̄i)

n
∑

j=1

(1− δj)K
ij
h (Uj − ui)

× (Zi − Ẑi)
Tβ + (1− δ̄i)

n
∑

j=1

Kij
h (Uj

− ui)δj(Zi − Ẑi)
Tβ + δ̄i(Zi − Ẑi)

Tβ.

Let ΦKI(Ui) = ΦI(Ui),ΓKI = ΓI . By simple calcu-
lation, we have

I1 =
1

n

n
∑

i=1

(1− δ̄i)

n
∑

j=1

Kij
h (Uj − ui)

× (1− δj)(Zi − ΦKI(Ui)Γ
−1
KI(Ui)Xi)(Zi−

Φc(Ui)Γ
−1
c (Ui)Xi)

T√n(β̂c − β) +Op(1)

= Σ3Σ
−1
1

1√
n

n
∑

i=1

δi(Zi

−XT
i Γ

−1
c (Ui)Φc(Ui))εi +Op(1). (30)

Similarly, I2 = Op(
√
nc2n). The expression ofI3

can be rewritten as

I3 =
1√
n

n
∑

i=1

(Zi − Ži)(X
T
i α(Ui)− SKIiM)

− 1√
n

n
∑

i=1

(Zi − Ži)(1− δ̄i)

×
n
∑

j=1

Kij
h (Uj − ui)(1 − δj)SKIj(M̂c −M)

− 1√
n

n
∑

i=1

(Zi − Ži)(δ̄i+

(1− δ̄i)

n
∑

j=1

Kij
h (Uj − ui)δj)SKIiεi

− 1√
n

n
∑

i=1

(Zi − Ži)(1− δ̄i)

×
n
∑

j=1

Kij
h (Uj − ui)(1 − δj)Žj(β̂c − β),

= I31 + I32 + I33 + I34. (31)

SinceI31 = Op(1), I32 = Op(1),
1
n

∑n
i=1(Zi −

Ži)S
T
KIiX = Op(1),

1
n

∑n
i=1(Zi − Ži)Ži

T
= Op(1),

β − β̂c = Op(n
−1/2). Thus, we haveI33 = Op(1),

I34 = Op(1), which means thatI3 = Op(1).
ForI4, it follows that

I4 =
1√
n

n
∑

i=1

(1− δ̄i)

n
∑

j=1

Kij
h (Uj − ui)(1− δj)Zi

×(XT
i , 0){DT

ui
W δ

ui
Dui

}−1DT
ui
W δ

ui
εi

− 1√
n

n
∑

i=1

(1− δ̄i)

n
∑

j=1

Kij
h (Uj − ui)(1− δj)Ži

× (XT
i , 0){DT

ui
W δ

ui
DT

ui
}−1DT

ui
W δ

ui
εi,

= I41 − I42. (32)

Similar to the analysis ofI3, we have

I41 =

n
∑

j=1

Kij
h (Uj − ui)(1− δj)

× 1√
n
{

n
∑

i=1

ΦKI(Ui)Γ
−1
c (Ui)Xiδiεi

−
n
∑

i=1

Φc(Ui)Γ
−1
c (Ui)Xiδiεi}+Op(1).

I42 =
n
∑

j=1

Kij
h (Uj − ui)(1 − δj)

× 1√
n
{

n
∑

i=1

ΦKI(Ui)Γ
−1
c (Ui)Xiδiεi

−
n
∑

i=1

ΦKI(Ui)Γ
−1
KI(Ui)Xiδiεi}+Op(1).

Thus, it satisfies

I4 =

n
∑

j=1

Kij
h (Uj − ui)(1 − δj)

× 1√
n
{

n
∑

i=1

(ΦKI(Ui)Γ
−1
KI(Ui)Xiδiεi,

−
n
∑

i=1

Φc(Ui)Γ
−1
c (Ui)Xiδiεi}+Op(1).

ForI5, it can be given as

I5 =
1√
n

n
∑

i=1

(Zi − Ži)(δ̄iεi

+ (1− δ̄i)

n
∑

j=1

Kij
h (Uj − ui)δjεj)

=
1√
n

n
∑

i=1

(Zi − Ži)(εi

− (1− δ̄i)

n
∑

j=1

Kij
h (Uj − u0)(1 − δj)εj)

=
1√
n

n
∑

i=1

(Zi − Ži)δ̄i

n
∑

j=1

Kij
h (Uj − ui)

× (1− δj)εj +Op(1).

(33)
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Hence, it shows that

√
n(β̂KI − β)

= Ξ−1(Σ3 + Σ̌1)Σ
−1
1

1√
n

n
∑

i=1

δi(Zi

−XT
i Γ

−1
c (Ui)Φc(Ui))εi +Op(1). (34)

Similar to the proof of the Theorem 3, by the The-
orem of Slutsky and the center limit Theorem, we ob-
tain the results of Theorem 5.

Simultaneously, similar to the proof of theorem 5
and theorem 2, we can obtain theorem 8, theorem 6
and theorem 9, respectively, which are omitted here.

Proof of Theorem 7. By the theorem 3 and theorem
5, we have

Ξ−1Ω3Ξ
−1 −Σ−1Ω2Σ

−1

= Σ−1(Ω3 − Ω2)Σ
−1

= Σ−1(
n
∑

j=1

Kij
h (Uj − ui)(1− δj)(Σ2 +Σ1)

× Σ−1
1 Ω1Σ

−1
1

n
∑

j=1

Kij
h (Uj − ui)(1− δj)

× (Σ2 +Σ1)− (Σ2 +Σ1)Σ
−1
1 Ω1Σ

−1
1 (Σ2

+Σ1))Σ
−1

= Σ−1{[(
n

∑

j=1

Kij
h (Uj − ui)(1 − δj))

2I − I](Σ2

+Σ1)Σ
−1
1 Ω1Σ

−1
1 (Σ2 +Σ1)}Σ−1.

As we have denoted
∑n

j=1K
ij
h (Uj − ui) = 1 in sec-

tion 4 and the value ofδj is 1 or 0, thus it is obviously
that (

∑n
j=1K

ij
h (Uj − ui)(1 − δj))

2I − I < 0. Ad-
ditionally, as we know, the covariance matrix is pos-
itive definite. Furtherly, the result ofΞ−1Ω3Ξ

−1 −
Σ−1Ω2Σ

−1 is a negative definite matrix and the theo-
rem 7 is proved.
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